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Abstract

A general technique is presented for identifying the extreme points

of a convex set C of log-convex functions and the extreme points of

a certain types of its comrex subsets. For K one these subsets, it is

shown that ext K = K n ext C even though K is not an extremal subset of C
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1. Introduction. "The identification of the extreme points of a

convex set is an important problem in mathematics. One reason for iden-
tifying the extreme points is that they are, in many instances, the basic
building blocks for the convex set. For instance, when the convex set
is a compact subset of a locally convex space it is the closed convex
hull of its extreme points (Krein-Milman Theorem) and if in addition the
set is metrizable, any point in it has an integral representation in
terms of the extreme points (Choquet's Theorem). g%““}

Recently, Langberg, Leén, Lynch, mw, referred
to as L3P) (1978, 1979) have identifiea;the extreme points for certain
types of convex compacg sets of prgyfgfllity distributions which occur in

have ee, (Lewnt

reliability thoery. LSP (1979) identify the extreme points for the set

are i(dentik ed

of discrete decreasing failure rate distributions and, without appealing
to choquet's Theorem, give an explicit representation .for these distri-
but:ions in terms of the extreme points.‘ ) In LSP (1978) , they identify
the extreme points v_fo_,:'_,;hede’ci-‘éifs'i;g/;ailure rate distributions in the
continuous case C;It turns out that techniques employed in this last
paper can be used to identify the extreme points for certain convex sets
of log-convex functions. The purpose of this pcper is to present these
Tesults. o

In Section 2, som2 preliminary materizl is presented and the main
result - Theorem 2.1, which identifies the extreme points - is stated.
The proof of Theorem 2.1 is given in Section 4. In Section 3, certain

types of convex subsets of log-convex functions are examined and their

extreme points are identified.
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2. Preliminaries and the Main Result. Throughout let ta, bl

(- < a <b < ») be a fixed interval. Denote the space of continuous
functions on ta, bl by Cta, bl and denote the space of finite signed
measures on *a, bl by C*ta, bl, which is the dual of C:a, bl. Let L
denote the set of functions which are log-convex on ia, bl, i.e., those
functions x(-) which are positive on ta, bl and for which log x(°) is

convex on [a, b]. For a fixed constant c, let
C={xe L: x(a) = ¢c and x is continuous at a and b}.

It is well known that L is closed (under pointwise convergence) and convex
(see Roberts and Varberg, 1973, Section 13); thus C is a closed convex
subset of C[a, b] with the usual norm.

For each x ¢ L and t ¢ [a, b], let X(t) = log x(t). Since X is
convex, its first and second order derivatives, x' and x", exist almost

everywhere (a.e.) on [a, b]. Let

5 {t € [a, b]: X" exists at t}.

Denote the Lebesque measure by m and let

E={xeC: n(t e E : a' St <b'and X'(t) <8 >0
{
for all a s a' <b' < b and all § > 0}.
For each x ¢ C, let I(x) denote an interval of positive length
contained in [a, b] such that for some cx >0, X' > 6 a.e. on I(x). If
no such interval exists, let I(x) = #, the empty set. Note that if

x ¢ C n E®, then I(x) = # and for some §, > 0 we have X" > &, a.e. on I1(x).

AN, liziin,. Do) it
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Recall that a point x in a convex set K is an extreme point of K if

X=ay +(1-a)z,0<a<1l, andy, z € K imply that y = z = x, The set
of extreme points of a convex set K will be denoted by ext K. In the
following theorem, the proof of which is given in Section 4, the extreme
points of C are identified.

Theorem 2.1. ext C = E,

Remark. Since ext C = £, ext C is dense (under uniform convergence
on [a, b]) in C. This can be seen as follows. Let x € C. Then X is
convex on [a, b]. For each positive integer n, partition [a, b] into a
countable number of intervals each of length less than 1/n and denote the
set of endpoints of these intervals by {t;'}. Let xn(t) = xn(t';) ift= t'; for
some i and linear between endpoints of an interval in the partition.

Then xn is convex and X, = e" € E since X; =0a.e. on [a, b]. Since
X, *x uniformly on [a, b], E = ext C is dense in C.

The proof of Theorem 2.1 and the examples in the next section re-
quire the technical lemma given below.

We need the following notation. For the interval [a', b']

(a <a' <b' <b), let c(2) [a*, b'] denote the set of functions on [a', b']
which have continuous second derivatives. The norm on cm [a', b'] is
given by ||x||[‘,’ pr] = max CUxe)|, |x' ()|, |x"(t)|: t € (a', b']}. The
subspace of c@ [a', b'] of functions which vanish at a' and b' and whose
first and second order derivatives also vanish at a' and b' will be
denoted by Csz) (a', b']. The set of all functions in C[a, b] that vanish
off [a', b'] and have restrictions to [a', b'] which are in C{)[a', b']
will be denoted by V[a', b']. For t < In 2, let c(t) = In (2 - e%).
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Lemma 2.2, Let X be a convex function on [a, b] which has its
second derivative a.e. uniformly bounded away from zero on some subinter-

val [a', b'] (a' <b') of [a, b]. Let {An} be a sequence of functions

R Ty T

B

defined on [a, b] which are in V[a', b'] and such that HAnH[‘, 1] * O
»

as n + «, Then the functions

2.1) X def y A and X, def x & c(a)

are well-defined and convex for all sufficiently large n. In particular,

for all sufficiently large n, the functions

xln i x2!1

g : (2.2) X1n SEe and X 5 €

are log-convex on [a, b] and

{ i
: (2.3) Xse = (xln + xz“)/n.
1
; ? Proof. Let xm and xZn be as given in (2.1). Then xm is always
i well-defined while XZ“(t) makes sense only when An < 1n 2. Since
[1a || +0 as n + = and A vanishes off [a', b'], it follows that X, and
4
| X.m are well-defined for all sufficiently large n. Throughout the remain-
der of this proof, it will be assumed that n has already been chosen so
that X, is well-defined.

Since X" is a.e. bounded away from zero on [a', b'], there is a

T

§ > 0 such that X" > § a.e. on [a', b']. Since X' and X" exist a.e. on

[a, b], X!_ and X! (1 = 1, 2) exists a.e. and satisfy the following
in in

identities:

Xy, = X'+,

Ky * X0 Sy,




Xy = X"+A;;,

"
In
)2

X = X" e c'(8 )AN + () (8}

Since X'"(t) > § a.e. on [a', b'] and llAnll + 0 as n -+ it follows

from the continuity of c' and c" that x;l'n(t) >68/2 (i =1, 2) for all

sufficiently large n, say n 2 n,. let n 2 ng. Thus xin is strictly

18
it
s

G

L
19
3

convex on [a', b'] for n 2 n,. Also X and Xin and their derivatives

agree off (a', b') since An vanishes off (a', b') and ¢c'(0) = 0. It

follows that xin (i =1, 2) are convex on [a, b], and consequently, the

: functions x defined in (2.2) are log-convex.

in and *on
Finally,

(exp{X + An} + exp{X + c(a,) hH/2

|

e

g exp {X}(exp &, + exp c(An))IZ -

x(exp An + 2 - exp An)lz
= X,

which proves identity (2.3). ||
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3. Extreme Points of Convex Subsets of C. Let K be a convex

subset of C. Then clearly
K n ext C c ext K.

It is of interest to know when there is equality above rather than just

contaimment; i.e., when is (3.1) below satisfied?
(3.1) K n ext C = ext K.

It is an elementary observation that (3.1) holds when K is an
extremal subset of C. Recall that a subset of K of convex set C is an

extremal subset of Cif x, ye C, 0 <a <1, and ax + (1 - a)y € K imply

that x, y € K.

In this section, we shall see that condition (3.1) holds for some
subsets K of C which are not extremal subsets.

Lemma 3.1. Let K be a convex subset of C and X, € KnES. Then
Xy ¢ ext K provided that there exists (i) a set of functions, Kl’ defined
on [a, b] for which K = K1 n E®, and (ii) a proper subinterval [a', b']. of
I(xO) such that the zero function is not an isclated point of the set

{a eV[a', b']: xoeA and x ec(A) are both in'Kl}.

0
Proof. By the hypothesis of the theorem there is a sequence
An

{4} « v[a', b'] (4 # 0) such that IIAnH[‘,’ pr) * 0 and xpe" and

c(a) A
x5 B” are both in Kl. By Lemma 2.2 for all sufficiently large n, say

s c(a)
nz Ny, X " and xq® ™" are both log-convex and therefore also in C
A c(a )
n n,

o

since An vanishes at a. Thus xge 0 and x,e are in'K. Now by




g

%, ‘e(a)
identity (2.3), we have Xo = (Xge + xye )/2. This shows that

x, ¢ ext K since 4 is not identically zero. ||
o

Theorem 3.2. If the hypothesis of Lemma 3.1 is satisfied for every

X, € Kn Ec, then (3.1) holds; i.e. K n ext C = ext K.
Proof. By Theorem 3.1, exp K < K n ext C, while the reverse inclusion

is obvious. ||

In Examples 1 and 2 below we use Theorem 3.2 to identify the extreme
points of two interssting convex subsets of C. Two other applications
are given later in the paper. For another interesting application of
importance in statistics, see L3P (1978) .

Example 1. Fix t, ef[a, b] and let K denote the set of all functions

in C whose minimum occurs at ty- Then K is convex and K = K1 n C, where

Kl is the set of functions on [a, b] whose minimum occurs at ty. Let

x € K n E, Then there is an interval [a', b'] € I(x) (-= < a' < b' < =)
such that inf {x(t): t € [a', b']} > x(ty). Notice that t, ¢ [a', b'].
Choose any sequence {An} c V[a', b'] (& # 0) such that llAnlI[.. e 0.

Since IIAnH +0asn+*and {An}cv[n',b'], then sup

{al ,b|]
{lca (1)) I: t e [a', b']} »0as n+> = and 4 and c(4) vanish off

8, (ty) c(a,(ty))
[a', b']. Since An(to) = 0 implies that x(ty)e - x(to)o = x(to),

it follows that for all sufficiently large n,

8, ()
(3.2) inf{x(t)e * : t e [a, b)) = x(tp)

c(a,(t))
= inf{x(t)e

by - clay)
Equivalently, xe = and xe are in Kl for all sufficiently large n.

Thua A = 0 is not an isolated point of {4 € V[a', b']): xo‘, ”C(A)_‘ Kl}.

:te [a, b]).

Thus the hypothesis of Lemma 3.1 is satisfied for every x ¢ K n E®, and
thus (3.1) holds by Theorem 3.2.
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Example 2. Let K denote the set of all functions in C which are

to Neg e

déciéisiné 6n [a, B]; Then K is convex and K = K1 n C, where K1 is the
set of decreasing functions on [a, b]. Let x € K n E®. since x ¢ ES we
can choose [a', b'] < I(x) such that -» < a' <b' < », Let {An} be any

sequence in V([a', b'], where 4 £ 0 and IIAnII[a',b'] +0asn -+ By
An c(An)
0 such that xe = and xe are

A c(a)
log-convex for n 2 n,. Since x is decreasing and since xe " and xe "

A
are log-convex and agree with x off [a', b'], it follows that xe ™ and
c(a)

xe " are decreasing and so are in Kl' Thus this sequence

c(8)

Lemma 2.1, there exists an integer n

{An: n 2 no} c {d ¢ V[a', b']: xeA, xe € Kl}’ and so A = 0 is not an
isolated point of this set. By Theorem 3.2, (3.1) holds.

 Remark. In Example 2, let a be finite. If b = =, it is easy to
see that K is an extremal subset of C, in which case, (3.1) holds by the
remark following (3.1). However if b < =, the above argument does not
hold since in this case K is not an extremal subset of C.

Throughout the remainder of this section, we consider convex subsets

K of C of the form
K={xeC: L(x) = k},

where L is a linear functional and k is a fixed constant. For L a
continuous linear functional on C[a, b] (i.e., L € C*[a, b]), we prove
in Theorem 3.5 that (3.1) holds. The following two lemmas are needed for
the proof of Theorem 3.5.

Lemma 3.3. Let L be a linear functional on C[a, b], [a', b'] ¢ [a, b],
A eV[a', b'], and x € C. Let L(xeA) = L(x) and sup {A(t): t ¢ [a', b']}
<1n 2. Then L(xe*®) = L(x).
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Proof. First note that since A ¢ V[a', b'] and sup{A(t): t ¢ [a', b']}

< 1n 2, both xeA and xec(A)

are in C[a, b], and consequently both L(xeA)
and L(x (® are well- defined. Since L(xe®) = L(x) and by the defini-
tion of c(+), ec(A) =2 - eA, we conclude that L(xec(A)) = 2L(x) - L(xeA)

= L(x), as was to be shown. ||

-

Lemma 3.4. Let L € C*[a', b'] (a < a' <b' <b) and X, € C[a', b'].
Then (a) there exists a sequence {An} c ng)[a', b'] of nonzero functions

) A
n
such that ||An|'[a:b']* 0 as n+ » , and (b) L(xo) (xoe Y.

Proof. We know that L(x) = I[a,b]x(t)u(dt) =
Jalp' X0 6@t = [0 X @ Bt - [0, x @0 @0+, 4 ©W @0
where x' 2 x v o, x™ = -(x A 0), and where ' and u_,are the positive and’
negative parts given in the Jordan-Hahn decompogitioﬂ 2f some fifite
signed measure u defined by L. Thus it is sufficient to prove the-theorem
for x a positive function and u a positive measurg.

For simplicity assume that -both a' and b' are finite. A modification

of the argument given below will hold when a' and b! are not necessarii}
finite. Let m = (a' + b')/2. ;

Case 1. u(a', m) = 0 or y(m, b'] = 0. Without loss of génerality,
assume that ufa', m) = 0. Define An(t) = (m - t)3(t - a')3 fora' <t Sm
and 0 otherwise. Then {An} satisfies the conditions stated in the“conclu-
sion of the theorem.

Case 2. yu[a', m) s 0 and u(m, b'] > 0. For nonnegative numbers M

and N, let a ) ”"

AM, N) = M(a' - t)° fora' <t <m,
= N(b' - t)3 form<t<b',

=0 otherwise.

) - 1P T s g
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Consider the function H(M, N) = L(xge Ny M, N20. Then (i) H is a

continuous function such that H(O, 0) = L(xo), and (ii) for each M > 0,

H(M, N) increases as a function of N from a value less than L(xo) to the

value », Property (i) follows from the Bounded Convergence theorem,
while Property (ii) follows from the definition of A(M, N) and the fact
., : that both u[a', m) and y(m, b'] are greater than zero. From these two
j : properties, it is easy to see that for each positive integer n there
. exists a positive integer Nn such that L(1/n, Nn) = L(xo) and Nn converges
i to zero as n + », If we let An = A(1/n, Nn). the conclusion of the theorem
follows. ||
Theorem 3.5. Let L € C*[a, b] and k be a fixed constant. Let

- K={xe C: L(x) = k}. Then K is convex and ext K = K n ext C.

Proof. Let I(1 = {x ¢ C[a, b]: L(x) = k}. Then K = K1 n C and K is
convex since Kl and C are convex. Let Xg € K n Ec. Then there is an

interval [a', b'] ¢ I(xy) with - < a' < b' < w., By Lemma 3.4, there is

a sequence of nonzero functions {An} c V[a', b'] such that

IIAnII[‘.,b.] + 0 as n + » and such that L(xoeAn) = k for each n. By
C(An)
Lemma 3.3, L(xoe ) = k for each n. Thus A = 0 is not an isolated

point of {A € V[a', b']: xoeA and xoec(A) are both in Kl}. Thus the

hypothesis of Lemma 3.1 is satisfied for every X € K n E° and so

IORAR RSN Y 1 7 v e

ext K = K n ext C by Theorem 3.2. ||
Example 3. Let [a, b] be a bounded interval, n a fixed integer

greater than 1, and k a fixed constant. Let

f
L

K= i{x e C: [Pelxar) = k).

An integration by parts yields
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Peix(at) = x()b" - x(a)a" - Pax(tye™la.
Thus K = {x € C: L(x) = k}, where L ¢ C*([a, b] is given by
L(x) = x(b)b" - x(a)a" - fznx(t)tn'ldt

for each x € C[a, b]. By Theorem 3.5 we conclude that K n ext C = ext K.
Example 4. Let K be as specified in Examples 1 and 2, let L ¢ C*[a,b],
and let k be a fixed constant. Let K = {x ¢ K: L(x) = k} = Kn{x: L(x) = k}.
Then K is convex since K is convex and L is linear. Let x € K n ES.
Then there is an [a', b'] < I(x) with a' < b'. By Lemmas 3.3 and 3.4,
there is a sequence of nonidentically zero functions {An} c V[a', b'] A
such that (i) "An||[a',b'] +0asn~+= and (ii) L(xeAn) = L(x) = L(xe =

In Examples 1 and 2 the sequence {An} is an arbitrary sequence satisfying

(i). Using the arguments in Examples 1 and 2 and the properties of An

B i

).

given above, we see that A = 0 is not an isolated point of {4 € V[a', b]: xeA

and xe®) ¢ , both in K}. Thus the hypothesis of Lemma 3.1 is satisfied
and we conclude that ext K = K n ext C by Theorem 3.2. We note that here
K n {x: L(x) = k} plays the role of K, in Lemma 3.1.

4. Proof of the Main Result. We prove Theorem 2.1 by showing that

(i) €E c ext C (Lemma 4.1) and (ii) ext C ¢ E (Lemma 4.2).
Lemma 4.1. E c ext C.

Proof. Let x ¢ E. Since C is convex, to prove that x ¢ ext C, it

suffices to prove that

(4.1) X = (x1 + xz)lz, with Xys Xy € C,
implies
(4.2) X, = X, =X,

—— i T S Sk LY




Thus assume (4.1), We shall show (4.2).

Let t) e M = {t: X} and Xj exist at t}. Since m(M%) = 0 and x € E,

m([to, ty * 1/nl nMn {t: r' < 1/n}) > 0.

E f : it follows from the definition of E that, for each positive integer n,
PR
&

Hence we may choose a sequence {tn} eM such that t > t,and X"(tn) + 0 as
n + =, By asubsequence argument we may also deduce that the sequences
b {X¥(tn)} and {xg(tn)} both have limits (possibly infinite). Now using
Z;» the definitions of c, xl, and xz, and usipg (4.1), we can show that

4 (X2 - X)(tn) = c((xl - XJ(tn)). Differentiating twice and taking limits,

% we get
!

! (4.3) lim Xg(tn) = c'((x1 - X)(to))(lim X;(tn))

0y - V(D) K)(ey) - X' (¢ )2,

since X"(tn) + 0 and tn +> t0 as n + = and X, xl. X', and xi are continuous

at to.

Now for t < In 2, c'(t) = -es/(z - et) < 0 and c"(t) = -2ot/(2 - et)z < 0.

Hence using the fact that lim xg (tn) 2 0, we see that the expression on

the right of (4.3) is nonpositive. Since the expression on the left of

(4.3) is nonnegative, it follows that the expression on the right of (4.3)
is equal to 0. We conclude that X'(t) = Xi(t) for all t ¢ M. Reversing

the roles of x1 and x2 above, we get X'(t) = x&(t) for t ¢ M. Thus

(4.4) X' = X{ = X} a.e on [a, b]. ‘ z

Now since x, X and X, € C, c=x(a) = xl(n) = xz(a). and so, X(a)
H Xl(n) = xz(.). It follows from (4.4) that X = x1 = xz. or equivalently,

X=X =X, I

IPSHSSIPTSPSEIL ST SV CEW -



Lemma 4.2, ext C c E.

Proof. It suffices to show that if x ¢ C and x ¢ E, then x ¢ ext C,

To prove that x ¢ ext C it suffices to show that there exists x, and X, € c

1
such that (x1 + xz)/z = X,

Let x ¢ C and x ¢ E. Then there exists an interval [a', b'] c (a, b)
such that a' and b' are continuity points of X' and such that X" is a.e.
uniformly bounded away from 0 on [a', b']. For each n, let
8.(t) = (t - a)°®' - t)%n for a' < t s b’ and 0 otherwise, Then this

sequence of functions satisfies the hypotheses of Lemma 2,2 and so the

functions Xin (i = 1, 2) defined in (2.2) are in C for all sufficiently

large n, say n 2 n,. Since x = (x )/2 by indentity (2.3), x £ ext C. I
0

X
lno + "2n
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